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Abstract—The heat transfer by combined infrared-radiation and conduction in a layer of water vapor is
analyzed by using a potential method and measured values of spectral absorption coefficient in the
temperature range between 600 and 3000°K. It is found that the problem with the temperature-dependent
spectrum can be treated, with good approximation, as one with the spectral absorption coefficient
evaluated at a constant reference temperature. Thus, an approximate method of solution for the general
problem is established, at least for water vapor. Calculations are also made for a fictitious gas having a
very narrow single-band of absorption—emission. Various approximations which have been discussed by
previous investigators are re-examined.

NOMENCLATURE x
G.g, Green’s functions; Yo g #a T, 0) dx*;
ha 38/[2(2 - 8)] ; ﬂm? l‘xm(Tgs Q));
Ik directionally averaged spectral in- Ve %P> @)/%,(P);
tensity of radiation; , wave number;
k, ko, thermal conductivity; g, emissivity of surface;
L, physical thickness; a, Stefan—Boltzmann constant ;
l, fﬂp(l’), optical thickness; %p,  Planck mean coefficient defined by
.. 35);
oy “5, %ol T, ) dx*; %,  spectral absorption coefficient;
N, ko/(46T%3L); ¢,  spectral radiation potential,
N, kok,(p)/4cT%3); nl%/oTE*;
n, inward-drawn normal at surface; v, radiation potential defined by (15) and
P, pressure ; (28).
q*, total heat flux;
o  q*/eTEY); Subscripts
4»  defined by (23); b, black body radiation;
T*,  temperature; 1,2, surfaces at x* =0, L, except stated
T§,  reference temperature; otherwise :
T, T/Tg; 0, reference.
X, x*/L;
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Gardon [1] studied the transient and steady
heat transfer in a plane glass layer for the
temperature range between 27 and 707°C. The
problem was formulated step-by-step and cal-
culated by a method of finite difference. Howell
and Perlmutter [2] investigated the radiative
transfer in a hydrogen gas layer by using
Monte Carlo Method and line-average absorp-
tion coefficients. Gille and Goody [3] studied
analytically and experimentally the combined
conduction and radiation in an ammonia gas
layer through the use of total gas emittance and
the method of kernel approximation. Cess et al.
[4] examined the radiative transfer in a carbon
monoxide layer with heat generation. Novotny
and Kelleher [S] analyzed the combined radia-
tion and conduction in a carbon dioxide layer.
Analyses in [4] and [5] were made by assuming
the absorption coefficient as frequency-
dependent only and by using the kernel approxi-
mation and total band absorptance correlated
by Edward and Menard [6] and Tien and
Lowder [7].

It was concluded in [4] and [5] that the grey
approximation is totally inadequate to predict
the heat transfer in gases with spectral-dependent
absorption coefficient. This inadequacy was also
found in [2] but was not as severe as shown in
[4] and [5]. Sparrow and Cess [8] concluded
that this discrepancy was due to the extremely
wide band of hydrogen gas.

In this paper the heat transfer by conduction
and radiation in a water-vapor layer is treated
as a potential problem [9]. Measured values
of the line-averaged absorption -coefficient
reported by Ferriso, Ludwig and Thomson [10]
are used. The analysis is first made for the
general case with spectral- and temperature-
dependent absorption coefficient, and then for a
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simple one with the spectral absorption co-
efficient evaluated at a given reference tempera-
ture. If the temperature fields and heat fluxes
obtained for these two cases are in good
agreement, then an approximate analysis of the
general problem is established, at least for
water vapor, and the potential method can be
extended for the solution of more complicated
problems, such as multi-dimensional heat flow
in arbitrarily shaped domains, with temperature-
dependent spectrum and variable boundary
conditions, as will be discussed later. This is the
main purpose of this study.

Calculations are also made for a fictitious gas
with a narrow, single absorption-emission band
for the purpose of re-examining the inadequacy
of the various approximations which were
discussed in [4] and [5].

STATEMENT OF PROBLEM

We consider the steady heat transfer in a
conducting, absorbing and emitting medium
bounded by two infinite parallel plane surfaces.
We assume that (i) local thermodynamic equili-
brium exists, (ii) scattering of radiation is
negligible, (iii) refractive index of the medium is
equal to unity, (iv) the bounding surfaces are
grey, emit and reflect radiation diffusely, and
have the same value of emissivity, and (v) the
surfaces at x* = 0 and L are kept at constant
temperature T% and T3%, respectively, with
T > T3%.

With the above assumptions, the differential
equations and boundary conditions of the
spectral intensity and temperature can be
obtained in the same manner as those reported
in [9] for a grey medium. With notations defined
in the Nomenclature, they are

*x
¢ 0<x*<L
* 2
afz; (k ‘;z*> ~ —4n § ol — 1) dw 2

(O3]
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*
% = hx (IX — I¥,), x*=0 (3)
*
(% = —hx (I*—I¥,), x*=L 4)
T* = T* x*=0 (5)
T = T% x* =L (6)
where
3¢
"S- ?

and o, and w, represent the lower and upper
wave numbers of the spectrum concerned. An
alternative form of (2) may be written as

d de* +
dx*\  dx*

The thermal conductivity k is, in general, a
function of temperature. If we introduce

ko8* = 1[ k(T*) dT*, the terms on the left-hand

W2

4 d [ 1 dI*
r J—fﬁdw=o.(&

3 dx* %, dx*

side of (2) and (3) become k,V26* where k, is a
constant having the same dimension of k. Thus,
there is no difficulty to take the variation of
thermal conductivity with temperature into
account. In the following, however, we shall
consider k as constant so that results obtained
for various cases can be readily compared.
Equation (2) shows that, whenever emission
(%,1%,)is larger than absorption (x,I*), radiation
produces a distributed heat sink in the medium
and the temperature curve will be concave. This
will occur in high temperature region. Con-
versely, wherever emission is smaller than
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absorption, radiation produces a distributed
heat source and the temperature curve will be
convex. This will occur in the low temperature
region. Therefore, temperature curves will, in
general, appear in an S-shape. This holds true
both for grey [11] and for nongrey media.

INTEGRAL EQUATIONS FOR THE GENERAL
CASE » (T, w)
Introducing the new variables x, x,, ¢, and T
as defined in the Nomenclature, we obtain from
(1) through (6)

d2

a%ﬂ—wﬁ 3y 0<x,<ly ©)
d

MO0 =] %m0 (10
d

%’:= “Hdols) — braz]  e=lo (D)
d3T 1

EXT = — N ¥ (x) (12)
T=T, x=0  (13)
roT, x=1 (14
where

W) = | LT o) - d)do. (19

Note that the variables x,, and x as defined in the
Nomenclature are related through T*(x*).

We wish to solve (9) and (12) by the method of
successive approximations. For this purpose, we
transform them into integral equations by the
use of Green’s functions. The Green’s function
associated with ¢,, is known [11],

[(/3)cosh(/3)x;, + hsinh(,/3)x,,] [(/3)cosh(/3) (I, — X,,) + hsinh /3, —x,)]

G(x,,,‘x;,,w) =

(/3 [3 + rA)sinh (\/3) 1, + 2(;/3) hcosh (/3),]

(16)
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for x,, > x,, For x,, < x,, the results is the same
by interchanging x, and x,. The Green’s
function associated with T'is also known [11],

a7

The interchange of x and x’ gives the result for
x > x". The integral equations of ¢, and T are
then obtained as follows:

glx|x)=x(1 —x) forx < x.

le
+ 3 I ¢bw(x2m w) G(xw|xlm’ (1)) dx;»
0

Pa(Xer )

(18)
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where g, is the part of radiant enery transmitted
from one surface to the other through the
portion or portions of spectra where k, = 0 and
can be calculated by

1
2/e —1

4, = [T“‘ T3
- S (G101 —¢bwz>dw} 3)

INTEGRAL EQUATIONS FOR THE CASE x,(T%, v)
If the absorption coefficient is assumed as

where dependent only on the frequency or wave
F(xy, @) = A(w) sinh ( \/3)x number, (1), (8), (3) and (4) become
("4 - o 2
+Beosh (%, (19 Slo_spy _ _3pg, 4
O<x<«l
h d’T 1 d*v
Alw) = NE [B(@) — 4010, 0)]  (20) Ztinar =0 (25)
Beo) < MPrel(Y 3 cosh (YL + hsinh (y3) ] + (43) o
=TT 3 + Kysinh (J3) ], + 2(/3) heosh (J3) ],
and
‘ e e Wuido—du)  x=0
T=T,—(T, - T)x + — S‘I’(x)g(x|x)dx ey
; Woo M=) x=1 @)
where P(x) is defined by (15) and ¢pefX e, ) is n
related to ¢,,(x, ) through x,(T; w) and T(x). ~ Where
Once T(x) and ¢,(x,, w) are found, the heat 5 &
flux can be calculated by P(x) = S /3 2dw (28)

aT\ 4 ( do
_ 1o 22
q= 4N(d> 3S(ixwd(Jz)+cl,‘ (22)

Wi

The boundary conditions on T are the same as
those in (13) and (14). The Green’s function
associated with ¢, for this case is

\/ 3)cosh(y/3) Bux’ + hsinh(,/3) B, x"] [(y/3)cosh({/3) Bu(1 — x) + hsinh(,/3) B,(1 — x)]

G(x|x',w)

(/3) B[(3 + h¥)sinh (\/3) B, + 2(/3) hcosh (/3) B,,]

(29)
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for x > x'. For x < x’, we simply interchange
x and x’ in (29).
The integral equation of ¢, is then

d)w(x’ w) = f(x, (,0)
1
+ 383 | dpo(x, 0) Gx|x, w)dx’  (30)
0
where

f(x, w) = A(w)sinh (\/ 3)f,x

+ B(@)cosh (\/3) Box  (31)
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each tip. This arbitrarily assigned value will
affect considerably the absolute value of P(x),
but it will affect very little the value of AY
which is what we need in the calculation of T(x)
from (33) and of ¢ from (34). This can be easily
seen by substituting (30) into (28) and setting
B, — 0. If we wish to know the absolute value
of ¥(x), we have to use the energy equation in
the form of (2) as done in the preceding section,
but we can no longer obtain the temperature and

_ h¢bm1[(\/3) COSh (\/3) Bo) + h Sinh (\/3) ﬂw] + (\/3)h ¢b02

B(w) =

(3 + h?)sinh (\/3) B, + 2(/3) hcosh (/3) B,,

(32)

h
Alw) = (\/—3)[3(60) — 6500, 0)]

Integrating (25) twice and using (13) and (14)
gives the formal solution of (25) for T(x), as

T6) = [T, = (T, - Ty)x] — 5 [¥0)

- Y1) x+ % [P(0) — P(x)] (33

where P(x) is given by (28). The term in the
first bracket represents the temperature for pure
conduction and the rest is that due to radiation.
Once P(x) has been found, the heat flux can be
calculated by

g =4N(T, — T,) + $[%0) - ()] + 4, (34)
where g, is given by (23).

The advantage of using the energy equation
(3) can be clearly seen from (33) and (34) which
are in the same form as those for grey media
[9, 11]. Thus, the various approximate methods
developed in [9, 11] for the calculation of T(x)
and g will apply also for nongrey media with
%o = %o(Th, w). This will be discussed later.

For band emission, f, may approach zero
at band tips. In the numerical integration of (28)
we may assign a small non—zero value of B, at

flux equations as simple as (33) and (34)
respectively.

CALCULATED RESULTS

Equations (18) and (21) for the general case
were numerically solved by the method of
successive approximations on a CDC-6400
computer, for T% = 3000°K, T% = 600°K,
T* = 1500°K, k = 574 x 10° erg/(s cm°C) with
N as parameter. The relation between the
spectral absorption coefficient %, and w for
given values of T was obtained from data
reported in [10] and partly plotted in Fig. 1.
Fifteen unequal increments of w ranging from
50 to 7500 cm ™! were chosen such that x, goes
from a trough to a peak or a peak to a trough,
approximately one-half of an absorption—
emission band. Note from Tables in [10] that
%,(T*, w) is nonzero everywhere in the ranges of
w and T* that we are concerned. Totally 225
exact values of »,(T* w) were stored in the
machine for later interpolation. A linear tempera-
ture distribution was taken as the initial
approximation for the iteration process. The
iteration was stopped when the maximum error
of T(x) was 0-1 per cent of the preceding one.
For large values of N (say N > 0-1), three or four
iterations were sufficient, requiring about 20 s.
For small values of N, for instance N = 0-01, the
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F1G. 1. Spectrum of water vapor [10].

convergence was slow and took about 100 s.
Some of the calculated results of the temperature
distribution and heat flux for T§ = 1500°K are
shown in Figs. 2 and 4, respectively.

Equations (30) and (33) for the case of
».(T§, w) were also solved by the method of
successive approximations for T§ = 1500°K.
For the evaluation of x,{T}, w), the selection of
T§ = 1500°K was made on the following basis.
When all data of »,(T*, w) given in [10] were
plotted vs. w with T™* as parameter it was found
that x,{1500°K, ) represents approximately
the mean value of #,{T*, w) in the temperature
range between 600°K and 3000°K. The calcula-
tion for this case is much simpler than that for
the general case, and requires much less machine
time. Some of the calculated results of the
temperature fields and heat fluxes are plotted
in Figs. 3 and 4, respectively.

Calculations were also made for a fictitious
gas having a constant thermal conductivity and
a narrow single-band of absorption—emission

which depends only on wave number and
pressure, as sketched in the upper left corner
of Fig. 5. The purpose of this calculation is to
reexamine the inadequacy of the various
approximations which were discussed in [4, 5].
For this purpose, we define as in [4] a Planck
mean coefficient on the basis of the temperature
at the wall x* = 0,

e

xp(p) = (5) *o(®, P) Ppo (T, W} deo.  (35)
As will be seen soon, it is convenient to express
equations (24)(34) in terms of the optical
coordinate, 1 = xp(p) x. These equations remain
in the same forms provided that x, N and §,, are
replaced, respectively, by v, N’ and 7y, and the
domain 0 € x <1 is changed to 0 gt < 1
Calculations were made for two cases: one of
fixed optical thickness, ], and the other of fixed
physical thickness, L, with various values of N
which depends on pressure. Note that y,, does
not vary with pressure and it explains why we



HEAT CONDUCTION IN WATER VAPOR

-0 08 0-6 0-4 02 [}
20 T T T T T T T 1 I
AL %] f
l »=1-5
e
T r

F16. 2. Temperature distributions in H,O for x,, = x,(T*, w),
Tt = 3000°K, T% = 600°K and T§ = 1500°K.

have changed the coordinate from x to <.
Moreover, calculated results for grey cases were
mostly reported in terms of the optical co-
ordinate . Some calculated results for
Tt = T% = 300°K, T% = 30°Kand k = 18 x 10°
erg/(s cm°C) are shown in Figs. 5 and 6. Calcula-
tions were made for three, arbitrarily assigned,
small values of x,(p, w) at band tips and results
of AP, Tand g remained essentially the same.

DISCUSSIONS AND CONCLUDING REMARKS

Temperature curves in Figs. 2 and 3 exhibit
the same general feature as those for grey media
[11]. Thus, similar discussions as given in [11]
for grey cases can be made in regard to the
interaction between radiation and conduction
and the relative importance between absorption

FIG. 3. Temperature distributions in H,O for x,, = (T}, w),
T¥ = 3000°K, T% = 600°K and T§ = 1500°K.

and emission. As N increases, the S-shape of
temperature curves becomes less pronounced.
For N — oo, the temperature distribution
approaches to that of pure conduction and the
heat flux can be calculated by superposition of
pure conduction and optically thin radiation,

1
q=4N(T, - T,) + m(ﬁ - T%).

In fact, this equation gives good approximation
for N > 01, as shown by dots in Fig. 4. This can
be easily seen from the physical point of view:
the larger the value of N the smaller is the value
of L and hence the gas layer becomes more
transparent.

It is interesting to note from Fig. 4 that heat
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F1G. 4. Heat fluxes in H,O for x,(T*, w) and (T}, ») with
Tt = 3000°K, T% = 600°K and T§ = 15000°K.

fluxes obtained for the two cases, %,(T*, w) and
%,(1500°K) are in excellent agreement. In fact,
good agreement persists for values of T§ in the
range from 1500 to 1800°K. The temperature
fields as shown in Figs. 2 and 3 are also in
reasonable good agreement, with maximum
error of 42 per cent. When %,(1800°K, @) was
used, nearly the same results were obtained ; the
accuracy of temperature fields was somewhat
improved, but that of the heat flux slightly
reduced. This finding is of great importance in
view of the following facts.

The change -of the coordinate from x* to
x,(T*, w) is possible only for one-dimensional
problems in steady state. In other words, for
temperature dependent spectrum, the potential
method is restricted only to the solution of
steady, one-dimensional problems. However,
the change of coordinate from x* to x, as used
in the case of %, = %,(T$, ®), applies as well for
multi-dimensional problems with temperature-
dependent spectrum by using the spectrum of a
chosen reference temperature, %, (T§, w).

Results of grey approximation are also plotted
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in Figs. 5 and 6 for the fictitious gas. The
inadequacy of the grey approximation is clearly
shown, but is not as severe as reported in [5].
The total heat flux is under-estimated about
16 per cent for I =1 and h = 1'5, and over-
estimated about 12'4 per cent for [ =1 and
h =05 For L= 508 cm and h = 1'5, the under
estimation increases with the increase of N and
hence of pressure, but the difference is consi-
derably less than that found in [5]. The tempera-
ture is over-estimated everywhere except in a
thin layer near the hotter surface. For the non-
grey case, %,(p, ), the temperature curve takes
on an unpronounced S-shape which shows that
the interaction between radiation and
conduction is small. Thus, the total heat flux
may be calculated by the superposition of pure
conduction and radiation.

_4N(T, - T))
- ]

(Pow1 — Pro2) d0
* j e -1+ 04 % GO

Ao

Table 1. Comparison of heat fluxes obtained from (34), (36)

and (37)
N’ h Equation (36) Equation (37) Equation (34)
| = 10

A 05 03910 03888 04101
00266 15 (8513 09119 09230
, 05 05336 05314 05517
00662 15 99939 10545 10669
o135 05 07723 07700 07899
15 12325 12931 13073

, 05 10102 10080 10268
01986 15 14705 15311 15441

L=508cm

‘ 05 05253 05193 05399
00266 15 10666 10721 10855
, 05 05017 05009 05202
00662 15 094s4 10200 10330
oizs 05 04151 04877 05044
15 08515 09852 09968

oiogs 05 04564 04802 04994
15 08008 09644 09779
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If the Planck mean coefficient defined by (35) is
used in (36) we obtain

_AN(T, - Ty 1
1= I 2e— 1+ 304

X S (Poo1 — Pow2) d00 + 4, (37)

Aw

This is essentially a box model differing from
that conventionally defined only by the change
of the average absorption coefficient. Calculated
results from (36), (37) and (34) are shown in
Table 1. It is seen that results obtained from (36)
and (37) are in reasonable agreement with those
obtained from (34). The inadequacy of grey
approximation found from the present study
for a narrow single-band of absorption—-emission
seems to support that reported in [2], but not
that in [5].

Calculated results of the radiation-potential
drop, i.e. [¥(0) — ¥(L)] not shown in this paper,
are essentially independent of N(or N') for a
large range of values of N(or N'). Therefore, the
total heat fluxes for a large range of values of
N(or N') can be calculated by using the potential
drop of any value of N(or N’) say Ny(or NYy).

q(N) = 4N(T, — T,) + $[ (O, No)

- P(LNJI+4, (39

or

AN(T, - Ty)
]
4[P(0, Ng) — (L, Ny
+ 30

This conclusion which has been obtained for
grey case [9, 117, holds true also for all nongrey
cases investigated here.

Finally, it may be remarked that the potential
method has been applied with great facility for
the solution of combined heat conduction and
radiation in arbitrarily shaped domains by

g(N') =

)]+q.
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using generalized potentials, or heat potentials
[12] and also of heat conduction with change of
phase through the use of elementary Green’s
functions, or fundamental source functions [13].
These results will be reported in the near future.
The convergence and uniqueness of solutions
(including those in [9, 11] and this paper) will
also be discussed then.
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UN TRAITEMENT POTENTIEL DE CONDUCTION DE CHALEUR DANS DE LA VAPEUR
D’EAU AVEC UN SPECTRE DEPENDANT DE LA TEMPERATURE
Résumé—Le transfert de chaleur par radiation infra-rouge combinée i la conduction dans une couche de
vapeur d’eau est analysé en utilisant Ja méthode potentielle et des valeurs mesurées du coefficient d’absorp-
tion spectral dans le domaine de température compris entre §00°K et 3000°K. On trouve que le probléme
avec le spectre dépendant de la température peut étre traité avec une bonne approximation, comme avec
un coefficient d’absorption spectral évalué a une température constante de référence. Ainsi, on établit
une méthode approchée de résolution du probléme général, au moins pour la vapeur d’eau. Les calculs
sont aussi faits pour un gaz fictif ayant une bande unique trés étroite d’absorption-émission. De nombreuses
approximations discutées par des chercheurs antérieurs sont réexaminées ici.

BEHANDLUNG DER WARMELEITUNG IN WASSERDAMPF MIT EINER
POTENTIALMETHODE MIT TEMPERATURABHANGIGEM SPEKTRUM
Zusammenfassung—Es wird der Wirmeiibergang durch kombinierte infrarote Strahlung und Leitung
in einer Wasserdampfschicht untersucht, indem eine Potentialmethode und gemessene spektrale Absorp-

tionskoeffizienten in dem Temperaturbereich zwischen 600°K und 3000°K verwendet werden.

Es ergibt sich, dass das Problem mit dem temperaturabhiingigen spektrum in guter Niherung so
behandelt werden kann, als ob der spektrale Absorptionskoeffizient bei einer konstanten Bezugstemperatur
ermittelt wurde, So wurde, zumindest fiir Wasserdampf, eine Naherungsmethode zur Losung des all-
gemeinen Problemes entwickelt Es wurden auch Rechnungen fiir ein fiktives Gas mit einem einzigen sehr
engen Absorptions-Emissionsband durchgefiihrt. Verschiedene Naherungen, die von fritheren Autoren

diskutiert wurden, werden nochmals untersucht,

NMOTEHHHWAJBHBINA METOJ UCCIEIOBAHHUA TEIJIONPOBOAHOCTH
BOJAHOTO TAPA C 3ABHUCALIIM OT TEMIOEPATYPBHI CHHEKTPOM

AHHoTANUE—C TOMOL[bI0 NOTEHUUAILHOI'O METOJa AHAJMBUPYETCA COBMECTHBIN NepeHoc
Tena MHQPAKPACHEIM UBJIyYeHHeM U TeIIONPOBOAHOCTBIO B CJ0e BOJAHOTO Napa IpH
HCHOIL30BAHUM KO3Q@UIMenTa CHEKTPAILHOrO MOTJIOIEHNA B JHANa30He TeMNepaTyp OT
600 mo 3000°K. Haligeno, uTo 3a4a43 3aBUCHINEr0 OT BPEMEHH CIEKTpA MOMKET paccMar-
pHBATLCA ¢ XOPOUINM IPHOMIDKEHHeM Kax 33f34a ¢ KoopPuUueHTOM CHEKTPABHOTO NOTHO-
IMeHUA, ONPEJeNeHHEM ApH IOCTOAHHOH McxofHoli TeMneparype. Takum ofpasom, pas-
paloTan HpuOIMMKEHHBIT MeTo] petleHis ofwell 3ajadn, no KpailHeii Mepe, pas BOXAHOrO
mapa. PacueTsl Tak#e cAenaHsl 114 UKTIBHOrO rasa ¢ OYeHb Y3KOM M0I0COI MOTIOMEHN)A-
uanydenus. [lepecMoTpeHbl pasIMYHbBe ANNPOKCHMAIMHE, KOTOPHE pPAacCMaTPUBAIHCE paHee
APYTHMU KCCIIeI0BATENAMY .
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